3.11.14 \(\int \frac {1}{\sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} \sqrt {x}} \, dx\) [1014]

Optimal. Leaf size=8 \[ 2 \cosh ^{-1}\left (\sqrt {x}\right ) \]

[Out]

2*arccosh(x^(1/2))

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 8, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {336, 54} \begin {gather*} 2 \cosh ^{-1}\left (\sqrt {x}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*Sqrt[x]),x]

[Out]

2*ArcCosh[Sqrt[x]]

Rule 54

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ArcCosh[b*(x/a)]/b, x] /; FreeQ[{a,
 b, c, d}, x] && EqQ[a + c, 0] && EqQ[b - d, 0] && GtQ[a, 0]

Rule 336

Int[((c_.)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k =
Denominator[m]}, Dist[k/c, Subst[Int[x^(k*(m + 1) - 1)*(a1 + b1*(x^(k*n)/c^n))^p*(a2 + b2*(x^(k*n)/c^n))^p, x]
, x, (c*x)^(1/k)], x]] /; FreeQ[{a1, b1, a2, b2, c, p}, x] && EqQ[a2*b1 + a1*b2, 0] && IGtQ[2*n, 0] && Fractio
nQ[m] && IntBinomialQ[a1*a2, b1*b2, c, 2*n, m, p, x]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} \sqrt {x}} \, dx &=2 \text {Subst}\left (\int \frac {1}{\sqrt {-1+x} \sqrt {1+x}} \, dx,x,\sqrt {x}\right )\\ &=2 \cosh ^{-1}\left (\sqrt {x}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(38\) vs. \(2(8)=16\).
time = 0.82, size = 38, normalized size = 4.75 \begin {gather*} -8 \tanh ^{-1}\left (\frac {-1+\sqrt {-1+\sqrt {x}}}{\sqrt {3}-\sqrt {1+\sqrt {x}}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*Sqrt[x]),x]

[Out]

-8*ArcTanh[(-1 + Sqrt[-1 + Sqrt[x]])/(Sqrt[3] - Sqrt[1 + Sqrt[x]])]

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(39\) vs. \(2(6)=12\).
time = 0.39, size = 40, normalized size = 5.00

method result size
derivativedivides \(\frac {2 \sqrt {\left (\sqrt {x}+1\right ) \left (-1+\sqrt {x}\right )}\, \ln \left (\sqrt {x}+\sqrt {x -1}\right )}{\sqrt {\sqrt {x}+1}\, \sqrt {-1+\sqrt {x}}}\) \(40\)
default \(\frac {2 \sqrt {\left (\sqrt {x}+1\right ) \left (-1+\sqrt {x}\right )}\, \ln \left (\sqrt {x}+\sqrt {x -1}\right )}{\sqrt {\sqrt {x}+1}\, \sqrt {-1+\sqrt {x}}}\) \(40\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(1/2)/(-1+x^(1/2))^(1/2)/(x^(1/2)+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*((x^(1/2)+1)*(-1+x^(1/2)))^(1/2)/(x^(1/2)+1)^(1/2)/(-1+x^(1/2))^(1/2)*ln(x^(1/2)+(x-1)^(1/2))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 16 vs. \(2 (6) = 12\).
time = 0.29, size = 16, normalized size = 2.00 \begin {gather*} 2 \, \log \left (2 \, \sqrt {x - 1} + 2 \, \sqrt {x}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(-1+x^(1/2))^(1/2)/(1+x^(1/2))^(1/2),x, algorithm="maxima")

[Out]

2*log(2*sqrt(x - 1) + 2*sqrt(x))

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 27 vs. \(2 (6) = 12\).
time = 1.99, size = 27, normalized size = 3.38 \begin {gather*} -\log \left (2 \, \sqrt {x} \sqrt {\sqrt {x} + 1} \sqrt {\sqrt {x} - 1} - 2 \, x + 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(-1+x^(1/2))^(1/2)/(1+x^(1/2))^(1/2),x, algorithm="fricas")

[Out]

-log(2*sqrt(x)*sqrt(sqrt(x) + 1)*sqrt(sqrt(x) - 1) - 2*x + 1)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {x} \sqrt {\sqrt {x} - 1} \sqrt {\sqrt {x} + 1}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(1/2)/(-1+x**(1/2))**(1/2)/(1+x**(1/2))**(1/2),x)

[Out]

Integral(1/(sqrt(x)*sqrt(sqrt(x) - 1)*sqrt(sqrt(x) + 1)), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 20 vs. \(2 (6) = 12\).
time = 1.61, size = 20, normalized size = 2.50 \begin {gather*} -4 \, \log \left (\sqrt {\sqrt {x} + 1} - \sqrt {\sqrt {x} - 1}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(-1+x^(1/2))^(1/2)/(1+x^(1/2))^(1/2),x, algorithm="giac")

[Out]

-4*log(sqrt(sqrt(x) + 1) - sqrt(sqrt(x) - 1))

________________________________________________________________________________________

Mupad [B]
time = 5.29, size = 6, normalized size = 0.75 \begin {gather*} 2\,\mathrm {acosh}\left (\sqrt {x}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(1/2)*(x^(1/2) - 1)^(1/2)*(x^(1/2) + 1)^(1/2)),x)

[Out]

2*acosh(x^(1/2))

________________________________________________________________________________________